文章不长,但代码演示居多,可选择性阅读
Kotlin以扩展包的形式提供了序列化能力,使得能够以“Kotlin方式”进行序列化。Kotlin设计目标,是提供一个序列化抽象,具体格式实现可用Json、CBOR、Protobuf、Properties、Yaml等进行替换。但就目前的进度,仅提供了对Json的稳定支持。其它格式都处于试验阶段。
因此,我们看Kotlin的序列化,主要看的就是数据对象与Json之间的序列化和反序列化。
能力展示
场景假设:需要序列化一个数据类,包含五个字段
- resourceId:资源ID
- resourceType:资源类型
- updatedTime:更新时间
- usn:更新序列号
- data:资源数据
为方便演示,这些字段的类型和组织结构依据场景的不同而不同,下面演示针对这个数据类的对象的序列化。
基础能力
开局一段基础代码,下面的使用方式应该是我们能够使用得最多的场景和方式。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
| @Serializable class ResourceBasic<T> {
@SerialName("id") var resourceId: String? = null
@SerialName("type") var resourceType: String? = null
var updatedTime: Long? = null
var usn: Long? = null
var data: T? = null
override fun toString(): String { return "ResourceBasic(resourceId=$resourceId, resourceType=$resourceType, updatedTime=$updatedTime, usn=$usn, data=$data)" }
}
fun main() { val resource = ResourceBasic<JsonElement>().apply { this.resourceId = UUID.randomUUID().toString() this.resourceType = "record" this.updatedTime = LocalDateTime.now().toInstant(ZoneOffset.UTC).toEpochMilli() this.usn = null this.data = buildJsonObject { put("images", buildJsonArray { add("https://www.ppp.com/cdwrgwarhg.png") }) } }
val jsonFormat = Json { prettyPrint = true encodeDefaults = true } val jsonString = jsonFormat.encodeToString(resource) println(jsonString) val decodedResource = jsonFormat.decodeFromString<ResourceBasic<JsonElement>>(jsonString) println(decodedResource) }
|
输出
1 2 3 4 5 6 7 8 9 10 11 12
| { "id": "74020041-79c4-456c-bd42-c372a4049d61", "type": "record", "updatedTime": 1633780307486, "usn": null, "data": { "images": [ "https://www.ppp.com/cdwrgwarhg.png" ] } } ResourceBasic(resourceId=74020041-79c4-456c-bd42-c372a4049d61, resourceType=record, updatedTime=1633780307486, usn=null, data={"images":["https://www.ppp.com/cdwrgwarhg.png"]})
|
上面展示了Kotlin序列化的最基础能力
- 被序列化的类上必须添加@Serializable注解
- 被序列化的类可以带泛型
- 可以通过@SerialName注解修改序列化的键名
- 序列化时调用Json.encodeToString即可
- 反序列化时调用Json.decodeFromString即可
更多参考官方手册
自定义序列化逻辑
上例中更新时间为Long,但实际代码编写中使用LocalDateTime更为方便,此时我们需要为LocalDateTime写一个自定义序列化器。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
| @Serializable class ResourceInCustomSerializer {
var resourceId: String? = null
var resourceType: String? = null
@Serializable(with = LocalDateTimeAsLongSerializer::class) var updatedTime: LocalDateTime? = null
var usn: Long? = null
var data: JsonElement? = null
override fun toString(): String { return "ResourceBasic(resourceId=$resourceId, resourceType=$resourceType, updatedTime=$updatedTime, usn=$usn, data=$data)" }
}
object LocalDateTimeAsLongSerializer : KSerializer<LocalDateTime> {
override val descriptor: SerialDescriptor = buildClassSerialDescriptor("java.util.LocalDateTime")
override fun serialize(encoder: Encoder, value: LocalDateTime) { encoder.encodeLong(value.toInstant(ZoneOffset.UTC).toEpochMilli()) }
override fun deserialize(decoder: Decoder): LocalDateTime { return LocalDateTime.ofInstant(Instant.ofEpochMilli(decoder.decodeLong()), ZoneOffset.UTC) } }
fun main() { val resource = ResourceInCustomSerializer().apply { this.resourceId = UUID.randomUUID().toString() this.resourceType = "record" this.updatedTime = LocalDateTime.now() this.usn = null this.data = buildJsonObject { put("images", buildJsonArray { add("https://www.ppp.com/cdwrgwarhg.png") }) } } val jsonFormat = Json { prettyPrint = true encodeDefaults = true } val jsonString = jsonFormat.encodeToString(resource) println(jsonString) val decodedResource = jsonFormat.decodeFromString<ResourceInCustomSerializer>(jsonString) println(decodedResource) }
|
要点
- 自定义LocalDateTimeAsLongSerializer,实现KSerializer接口,重写一个属性,两个方法
- descriptor:类型描述
- serialize:序列化逻辑
- deserialize:反序列化逻辑
- @Serializable(with = LocalDateTimeAsLongSerializer::class)标注在目标属性上
上下文
上面的例子再变一下,updateTime有时可能想要转换为Long,有时却想要转换为ISO8601格式的字符串。即,要求根据不同上下文的变化选择不同的序列化器。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
| @Serializable class ResourceInCustomSerializer {
var resourceId: String? = null
var resourceType: String? = null
@Contextual var updatedTime: LocalDateTime? = null
var usn: Long? = null
var data: JsonElement? = null
override fun toString(): String { return "ResourceBasic(resourceId=$resourceId, resourceType=$resourceType, updatedTime=$updatedTime, usn=$usn, data=$data)" }
}
object LocalDateTimeAsLongSerializer : KSerializer<LocalDateTime> {
override val descriptor: SerialDescriptor = buildClassSerialDescriptor("java.util.LocalDateTime")
override fun serialize(encoder: Encoder, value: LocalDateTime) { encoder.encodeLong(value.toInstant(ZoneOffset.UTC).toEpochMilli()) }
override fun deserialize(decoder: Decoder): LocalDateTime { return LocalDateTime.ofInstant(Instant.ofEpochMilli(decoder.decodeLong()), ZoneOffset.UTC) } }
object LocalDateTimeAsStringSerializer : KSerializer<LocalDateTime> {
override val descriptor: SerialDescriptor = buildClassSerialDescriptor("java.util.LocalDateTime")
override fun serialize(encoder: Encoder, value: LocalDateTime) { encoder.encodeString(value.toString()) }
override fun deserialize(decoder: Decoder): LocalDateTime { return LocalDateTime.parse(decoder.decodeString()) }
}
fun main() {
val resource = ResourceInCustomSerializer().apply { this.resourceId = UUID.randomUUID().toString() this.resourceType = "record" this.updatedTime = LocalDateTime.now() this.usn = null this.data = buildJsonObject { put("images", buildJsonArray { add("https://www.ppp.com/cdwrgwarhg.png") }) } }
var jsonFormat = Json { prettyPrint = true encodeDefaults = true serializersModule = serializersModuleOf(LocalDateTime::class, LocalDateTimeAsLongSerializer) } var jsonString = jsonFormat.encodeToString(resource) println(jsonString) var decodedResource = jsonFormat.decodeFromString<ResourceInCustomSerializer>(jsonString) println(decodedResource)
jsonFormat = Json { prettyPrint = true encodeDefaults = true serializersModule = serializersModuleOf(LocalDateTime::class, LocalDateTimeAsStringSerializer) } jsonString = jsonFormat.encodeToString(resource) println(jsonString) decodedResource = jsonFormat.decodeFromString<ResourceInCustomSerializer>(jsonString) println(decodedResource)
}
|
要点
- 目标字段使用@Contextual注解,表明该字段的序列化器到上下文中去找
- 定义多个针对LocalDateTime的序列化器
- 在Json实例中,指定当前所用序列化模块,为LocalDateTime注册对应的序列化器,上面,我们用了两个Json实例,分别对应不同的上下文,注册不同的序列化器,对同一个对象的序列化结果有了不同的行为
序列化的多态
如果我们的Resource有两个版本,它们拥有共同的三个属性:resourceId、resourceType、data,其中一个版本拥有updatedTime,另一个版本拥有usn,于是有了类型的层次结构。现在假设我有一个列表,该列表同时有两个版本的数据,为了在反序列化时能够恢复出具体元素的类型,在序列化时就需要将元素的类型信息也进行序列化,这就是序列化的多态。如果你觉得对这个概念模式,谷歌一下“jackson @class”,一定是似曾相识。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
| @Serializable abstract class ResourceBase { var resourceId: String? = null var resourceType: String? = null var data: String? = null }
@Serializable class ResourceWithUsn : ResourceBase() { var usn: Long? = null }
@Serializable class ResourceWithUpdatedTime : ResourceBase() { var updatedTime: Long? = null }
fun main() { val resources = listOf( ResourceWithUsn().apply { this.resourceId = "1" this.resourceType = "record" this.data = "这是数据" this.usn = 123 }, ResourceWithUpdatedTime().apply { this.resourceId = "2" this.resourceType = "tag" this.data = "这是标签" this.updatedTime = Instant.now().toEpochMilli() } )
val jsonFormat = Json { prettyPrint = true classDiscriminator = "@class" serializersModule = SerializersModule { polymorphic(ResourceBase::class) { subclass(ResourceWithUpdatedTime::class) subclass(ResourceWithUsn::class) } } }
val jsonString = jsonFormat.encodeToString(resources) println(jsonString) }
|
序列化结果
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
| [ { "@class": "com.gitee.floyd.serialization.kotlin.ResourceWithUsn", "resourceId": "1", "resourceType": "record", "data": "这是数据", "usn": 123 }, { "@class": "com.gitee.floyd.serialization.kotlin.ResourceWithUpdatedTime", "resourceId": "2", "resourceType": "tag", "data": "这是标签", "updatedTime": 1633753842785 } ]
|
要点
- 父类和子类都要标注@Serializable
- Json实例中,注册多态声明,这里,我们声明ResourceBase的子类包含ResourceWithUpdatedTime、ResourceWithUsn
- 可以通过classDiscriminator自定义类型标记的key,这里写成@class,是为了让读者回想起jackson
Kotlin实际的多态稍有不同,由于Kotlin序列化的大部分工作都是在编译期完成的,因此将一个待序列化的对象声明为其父类型,也能够触发多态。还有接口、密封类在多态中也有不同的特性,具体参见官方手册
Java会有多态问题吗?
不会,Java序列化结果是二进制流,其中已经包含类型信息,不存在反序列化时候不知道具体类型的情况。也就是说,序列化的多态问题,只是对语言无关的序列化格式如Json有意义。
Json能力
之前在使用Vertx时,深感其提供的Json库好用至极;Jackson也提供了Tree Mode,让用户能够在不创建类对象的情况下灵活构建Json对象;kotlin也提供了类似的能力——JsonElement,不过它没那么强大:能够凭空构建一个JsonElement,能够遍历其中的数据,却不能修改其中的数据。
当然,Json能力并非本文的重点,我们的重点在于探究Kotlin序列化的使用方式和原理,因此有关Json能力,参考官方手册。
原理解析
Kotlin序列化几乎所有逻辑都在编译期生成。因此,配置Kotlin序列化时,需要同时引入序列化插件和序列化包
1 2 3 4 5 6
| plugins { kotlin("plugin.serialization") version "1.5.31" } dependencies { implementation("org.jetbrains.kotlinx:kotlinx-serialization-json:1.3.0") }
|
从@Serializable讲起
为目标类添加@serializable注解,编译器会自动生成序列化逻辑,以一个最简单的类进行展示
1 2 3 4
| @Serializable class SimpleData { val id: Long? = null }
|
其字节码反编译结果整理之后如下(去除了多余的噪声)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
| public final class SimpleData {
private final Long id; public static final SimpleData.Companion Companion = ... ...
public final Long getId() { return this.id; } ... ...
@JvmStatic public static final void write$Self(SimpleData self, CompositeEncoder output, SerialDescriptor serialDesc) { if (Intrinsics.areEqual(self.id, (Object)null) ^ true || output.shouldEncodeElementDefault(serialDesc, 0)) { output.encodeNullableSerializableElement(serialDesc, 0, (KSerializer)LongSerializer.INSTANCE, self.id); } }
public static final class Companion { ... ... public final KSerializer serializer() { return (KSerializer)SimpleData.$serializer.INSTANCE; } }
public static final class $serializer implements GeneratedSerializer { public static final SimpleData.$serializer INSTANCE; private static final SerialDescriptor $$serialDesc;
private $serializer() { }
static { SimpleData.$serializer var0 = new SimpleData.$serializer(); INSTANCE = var0; PluginGeneratedSerialDescriptor var1 = new PluginGeneratedSerialDescriptor("com.gitee.floyd.serialization.kotlin.SimpleData", (GeneratedSerializer)INSTANCE, 1); var1.addElement("id", true); $$serialDesc = var1; }
@NotNull public KSerializer[] typeParametersSerializers() { return DefaultImpls.typeParametersSerializers(this); }
@NotNull public SerialDescriptor getDescriptor() { return $$serialDesc; }
public void serialize(Encoder encoder, SimpleData value) { SerialDescriptor var3 = $$serialDesc; Encoder encoder = encoder.beginStructure(var3); SimpleData.write$Self(value, encoder, var3); encoder.endStructure(var3); } public void serialize(Encoder var1, Object var2) { this.serialize(var1, (SimpleData)var2); }
public SimpleData deserialize(Decoder decoder) { SerialDescriptor var2 = $$serialDesc; int var4 = 0; Long var5 = null; Decoder decoder = decoder.beginStructure(var2); if (decoder.decodeSequentially()) { var5 = (Long)decoder.decodeNullableSerializableElement(var2, 0, (KSerializer)LongSerializer.INSTANCE, var5); var4 = Integer.MAX_VALUE; } else { while(true) { int var3 = decoder.decodeElementIndex(var2); switch(var3) { case 0: var5 = (Long)decoder.decodeNullableSerializableElement(var2, 0, (KSerializer)LongSerializer.INSTANCE, var5); var4 |= 1; break; default: throw (Throwable)(new UnknownFieldException(var3)); } } }
decoder.endStructure(var2); return new SimpleData(var4, var5, (SerializationConstructorMarker)null); }
public Object deserialize(Decoder var1) { return this.deserialize(var1); } } }
|
解读一下生成的这个类
- 编译器生成了伴生类Companion,同时附带serializer()方法,返回一个KSerializer对象
- 类本身新增静态方法
write$Self(SimpleData self, CompositeEncoder output, SerialDescriptor serialDesc)
,在生成的序列化器中有被调用
- 看生成的序列化器内部——getDescriptor方法,返回一个SerialDescriptor对象
- 看生成的序列化器内部——serialize方法
- 传入Encoder对象、数据类对象
- 调用Encoder的方法,将数据类型写入
- 看生成的序列化器内部——deserialize方法
- 传入Decoder
- 从decoder中解析出字段,构建新的SimpleData对象并传入
- 看生成的序列化器,跟上面我们自己写的序列化器,像不像,其实它们就是一样的。
要点
添加了@Serializable的类,会自动生成属于自己类的序列化器
实际上随着Kotlin序列化库的引入,你会发现,所有Kotlin原生类型也都被添加了一个扩展方法,serializer()
点进去看看他们的逻辑,依然是内置实现了KSerializer
1 2 3 4 5 6 7
| public fun String.Companion.serializer(): KSerializer<String> = StringSerializer
internal object StringSerializer : KSerializer<String> { override val descriptor: SerialDescriptor = PrimitiveSerialDescriptor("kotlin.String", PrimitiveKind.STRING) override fun serialize(encoder: Encoder, value: String): Unit = encoder.encodeString(value) override fun deserialize(decoder: Decoder): String = decoder.decodeString() }
|
我们会发现几个关键定义:KSerializer、SerialDescriptor、Encoder、Decoder、SerialKind,搞清楚它们之间的联系,就基本清楚了Kotlin的序列化原理。
Kotlin序列化的设计思路
1 2 3
| +---------+ Serialization +------------+ Encoding +---------------+ | Objects | --------------> | Primitives | ---------> | Output format | +---------+ +------------+ +---------------+
|
这张图取自官方手册,对于理解至关重要。Kotlin将序列化分为两个阶段
- 阶段一(序列化):将目标对象序列化成基础类型,如Long、Char、String等,这一步是通用的,与最终序列化格式无关。这一步对应KSerializer
- 阶段二(编码):基础类型编码为最终格式,如Json、Protobuf。这一步对应Encoder、Decoder
核心类解析
现在我们可以来看那几个关键定义
KSerializer
它定义了Encoder和目标对象value的关系,即控制了编码器编码和解码目标对象的逻辑。编码时,需要用到类描述信息SerialDescriptor
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
| public interface KSerializer<T> : SerializationStrategy<T>, DeserializationStrategy<T> { override val descriptor: SerialDescriptor } public interface SerializationStrategy<in T> { public val descriptor: SerialDescriptor
public fun serialize(encoder: Encoder, value: T) } public interface DeserializationStrategy<T> { public val descriptor: SerialDescriptor
public fun deserialize(decoder: Decoder): T }
|
SerialDescriptor
从名称就可得知,它定义了目标类型的描述信息,它的常规实现是SerialDescriptorImpl
- serialName:序列化名称,一般是类名
- kind:目标类型,下文会讲
- elements:当为类类型时,会包含多个属性,它们是以元素集合的形式提供的,具体可以看SerialDescriptorImpl实现
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
| public interface SerialDescriptor {
public val serialName: String public val kind: SerialKind public val isNullable: Boolean get() = false public val isInline: Boolean get() = false public val elementsCount: Int public val annotations: List<Annotation> get() = emptyList() public fun getElementName(index: Int): String public fun getElementIndex(name: String): Int public fun getElementAnnotations(index: Int): List<Annotation> public fun isElementOptional(index: Int): Boolean }
|
Encoder/Decoder
上面说了,Encoder负责从原始类型向最终类型的转换,从接口定义就能看出
- serializersModule:这是一个专门为上下文和多态准备的类,下面会讲到
- encodeXXX:写入各种类型的数据,其中枚举和内联类一般会特殊处理
- beginStructure:当要编码的是一个复杂对象时,就需要用到CompositeEncoder,具体参见其源码,不过原理和Encoder差不多,套娃而已
- 最后两个方法只是快捷方法,用户自定义序列化器的情况:其实也只是套娃而已。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
| public interface Encoder {
public val serializersModule: SerializersModule
public fun encodeNotNullMark() {}
public fun encodeNull()
public fun encodeBoolean(value: Boolean)
... ...
public fun encodeString(value: String)
public fun encodeEnum(enumDescriptor: SerialDescriptor, index: Int)
public fun encodeInline(inlineDescriptor: SerialDescriptor): Encoder
public fun beginStructure(descriptor: SerialDescriptor): CompositeEncoder
public fun <T : Any?> encodeSerializableValue(serializer: SerializationStrategy<T>, value: T) { serializer.serialize(this, value) } public fun <T : Any> encodeNullableSerializableValue(serializer: SerializationStrategy<T>, value: T?) { val isNullabilitySupported = serializer.descriptor.isNullable if (isNullabilitySupported) { return encodeSerializableValue(serializer as SerializationStrategy<T?>, value) }
if (value == null) { encodeNull() } else { encodeNotNullMark() encodeSerializableValue(serializer, value) } } }
|
SerialKind
枚举了所有类型,其中CONTEXTUAL(上下文)和PolymorphicKind(多态)下文有详细讲解
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
| public sealed class SerialKind { public object ENUM : SerialKind() public object CONTEXTUAL : SerialKind() }
public sealed class PrimitiveKind : SerialKind() { public object BOOLEAN : PrimitiveKind() public object BYTE : PrimitiveKind() public object CHAR : PrimitiveKind() public object SHORT : PrimitiveKind() public object INT : PrimitiveKind() public object LONG : PrimitiveKind() public object FLOAT : PrimitiveKind() public object DOUBLE : PrimitiveKind() public object STRING : PrimitiveKind() }
public sealed class StructureKind : SerialKind() { public object CLASS : StructureKind() public object LIST : StructureKind() public object MAP : StructureKind() public object OBJECT : StructureKind() }
public sealed class PolymorphicKind : SerialKind() { public object SEALED : PolymorphicKind() public object OPEN : PolymorphicKind() }
|
看看Json序列化的实现
先引入一个定义:SerialFormat,它是专门定义用来作为序列化入口的接口,我们的实现类都使用它,包括Json类(这里的serializersModule暂且忽略)
1 2 3
| public interface SerialFormat { public val serializersModule: SerializersModule }
|
最常用的它的子类:StringFormat,定义了针对字符串的操作方式,及其快捷方式
1 2 3 4 5 6 7 8 9 10 11 12
| public interface StringFormat : SerialFormat {
public fun <T> encodeToString(serializer: SerializationStrategy<T>, value: T): String
public fun <T> decodeFromString(deserializer: DeserializationStrategy<T>, string: String): T }
public inline fun <reified T> StringFormat.encodeToString(value: T): String = encodeToString(serializersModule.serializer(), value)
public inline fun <reified T> StringFormat.decodeFromString(string: String): T = decodeFromString(serializersModule.serializer(), string)
|
最常用的序列化方法是StringFormat.encodeToString(value: T)
,实际调用Json.encodeToString
,它的逻辑:创建StreamingJsonEncoder(Encoder的实现类),将数据写入JsonStringBuilder,完成后转换为字符串进行返回。进入StreamingJsonEncoder查看,可以看到它定义了Composer类,控制Json格式的组合
1 2 3 4 5 6 7 8 9 10 11 12 13 14
| public final override fun <T> encodeToString(serializer: SerializationStrategy<T>, value: T): String { val result = JsonStringBuilder() try { val encoder = StreamingJsonEncoder( result, this, WriteMode.OBJ, arrayOfNulls(WriteMode.values().size) ) encoder.encodeSerializableValue(serializer, value) return result.toString() } finally { result.release() } }
|
如果我们去AbstractJsonLexer.kt下面看,还可以看到预定义的各种Json元字符。
实现上下文和多态
前文我们能够看到,在使用上下文和多态功能时,会创建SerializersModule,事实上,SerializersModule就是专门为上下文和多态设计的,因此首先要拆解SerializersModule,可以看到,它只包含了两类方法,上下文和多态,其中上下文返回的是KSerializer,多态在序列化和反序列化各自定义了一个方法。
1 2 3 4 5 6 7 8 9 10 11 12 13 14
| public sealed class SerializersModule {
public fun <T : Any> getContextual(kclass: KClass<T>): KSerializer<T>? = getContextual(kclass, emptyList())
public abstract fun <T : Any> getContextual( kClass: KClass<T>, typeArgumentsSerializers: List<KSerializer<*>> = emptyList() ): KSerializer<T>? public abstract fun <T : Any> getPolymorphic(baseClass: KClass<in T>, value: T): SerializationStrategy<T>?
public abstract fun <T : Any> getPolymorphic(baseClass: KClass<in T>, serializedClassName: String?): DeserializationStrategy<out T>? }
|
其唯一的实现类SerialModuleImpl如下,它维护了四个map
- class2ContextualFactory:存储类型和上下文Provider的映射,上下文Provider根据类型参数得到最终的序列化器
- polyBase2Serializers:存储了基类和具体值的真实类型的序列化器的映射关系,用于多态序列化
- polyBase2NamedSerializers:存储了基类和序列化后的类名的反序列化器的映射关系,用于多态反序列化
- polyBase2DefaultProvider:存储了针对基类的默认反序列化器
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
| internal class SerialModuleImpl( private val class2ContextualFactory: Map<KClass<*>, ContextualProvider>, @JvmField val polyBase2Serializers: Map<KClass<*>, Map<KClass<*>, KSerializer<*>>>, private val polyBase2NamedSerializers: Map<KClass<*>, Map<String, KSerializer<*>>>, private val polyBase2DefaultProvider: Map<KClass<*>, PolymorphicProvider<*>> ) : SerializersModule() {
override fun <T : Any> getPolymorphic(baseClass: KClass<in T>, value: T): SerializationStrategy<T>? { if (!value.isInstanceOf(baseClass)) return null return polyBase2Serializers[baseClass]?.get(value::class) as? SerializationStrategy<T> }
override fun <T : Any> getPolymorphic(baseClass: KClass<in T>, serializedClassName: String?): DeserializationStrategy<out T>? { val registered = polyBase2NamedSerializers[baseClass]?.get(serializedClassName) as? KSerializer<out T> if (registered != null) return registered return (polyBase2DefaultProvider[baseClass] as? PolymorphicProvider<T>)?.invoke(serializedClassName) }
override fun <T : Any> getContextual(kClass: KClass<T>, typeArgumentsSerializers: List<KSerializer<*>>): KSerializer<T>? { return (class2ContextualFactory[kClass]?.invoke(typeArgumentsSerializers)) as? KSerializer<T>? } }
|
现在我们可以按照步骤来看上下文和多态的实现方方法了
注册类和对应的序列化器,实际上就是创建SerialModuleImpl对象,并赋值给SerialFormat的serializersModule属性。
实际写入的是SerialModuleImpl.class2ContextualFactory属性
1 2 3
| Json { serializersModule = serializersModuleOf(LocalDateTime::class, LocalDateTimeAsLongSerializer) }
|
调用StringFormat.encodeToString(),它调用serializersModule.serializer()方法获取对应的序列化器
1 2 3 4 5 6
| public inline fun <reified T> StringFormat.encodeToString(value: T): String = encodeToString(serializersModule.serializer(), value)
public inline fun <reified T> SerializersModule.serializer(): KSerializer<T> { return serializer(typeOf<T>()).cast() }
|
重点就在serializer(typeOf<T>())
了,根据类型确定序列化器(走反射),源码过长过碎,这里就不展示了,只说大致逻辑
- 如果类型是枚举,则创建枚举序列化器
- 如果是接口,则创建PolymorphicSerializer,即多态序列化器,
- 如果伴生对象中存在序列化器,则直接使用(@Serializable自动生成的那个)
- 如果有Polymorphic注解,或者Serializable直接中明确指明使用PolymorphicSerializer,则返回多态序列化器
- 否则,调用SerialModuleImpl.getContextual()方法,根据类获取之前注册到上下文中的序列化器。
可以看到,在不同的情况下,会返回不同的序列化器,所谓上下文和多态,都是通过序列化器实现的。这里要多提的一点是,多态一定是通过PolymorphicSerializer实现的,因为它需要添加一个type字段。
总结
可以看到,上下文和多态,实际上都只是根据类型确定序列化器和反序列化器的过程,而这些序列化器默认来自SerializersModule。
当然,我们最终也可以显式地指定序列化器,跳过这个决定的过程,毕竟,StringFormat的方法都可以接收序列化器。
开发属于自己的序列化格式
这里做一个小演示,如果我想要实现自己的序列化格式,只需要三步
- 实现Encoder
- 实现SerialFormat
- 使用
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
| class FloydEncoder( private val sb: StringBuilder, override val serializersModule: SerializersModule ) : AbstractEncoder() {
override fun encodeValue(value: Any) { sb.append("$value}") }
override fun encodeElement(descriptor: SerialDescriptor, index: Int): Boolean { sb.append("{${descriptor.getElementName(index)}=") return true } }
object Floyd : StringFormat { override val serializersModule: SerializersModule = EmptySerializersModule
override fun <T> decodeFromString(deserializer: DeserializationStrategy<T>, string: String): T { TODO("Not yet implemented") }
override fun <T> encodeToString(serializer: SerializationStrategy<T>, value: T): String { val sb = StringBuilder() FloydEncoder(sb, serializersModule).encodeNullableSerializableValue(serializer, value).toString() return sb.toString() }
}
@Serializable data class Resource( val id: String, val desc: String )
fun main() { val resource = Resource("1", "用于测试自定义Encoder的资源") val encodeString = Floyd.encodeToString(resource) println(encodeString) }
|
输出
1
| {id=1}{desc=用于测试自定义Encoder的资源}
|
哪些文档能看
这里只讲了主要部分,具体细节还有更多,目前网络上系统介绍Kotlin序列化的文章不多,还是以官方文档为主
不过看源码有一个很重的感受:Kotlin库总是将抽象本身定义得比较抽象,然后大量使用扩展方法来为这些抽象增加能力,这会导致代码片段比较碎。如果用IDEA查看源码,会出现库的索引页全是类型,极不方便查找,但事实上可能只有少数几个kt源文件,所以需要探寻更加时刻Kotlin库的源码查看方式。
总结
优点
- Kotlin原生,使用起来相对优雅
- 其抽象逻辑具有很强的扩展性,要基于此实现自己的序列化格式也比较容易
- 序列化逻辑编译期生成,可能会比较快,这点尚未验证
缺点
- 太新,不够成熟,尽管Json版本已经稳定了,但其中很多API还是被标注为“实验性”的。如果线上要使用,我可能还是会选择Jackson吧。
- 不能很好滴和第三方库如Spring等很好地融合。
此外,本文所有代码,都能在这里找到。